limiting velocity - перевод на русский
Diclib.com
Словарь онлайн

limiting velocity - перевод на русский

HIGHEST VELOCITY ATTAINABLE BY AN OBJECT AS IT FALLS THROUGH A FLUID
Limiting velocity; Terminal speed; Settling velocity; Maximum velocity
  • Graph of velocity versus time of a skydiver reaching a terminal velocity.
  • The downward force of gravity (''F<sub>g</sub>'') equals the restraining force of drag (''F<sub>d</sub>'') plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant.

limiting velocity         

строительное дело

предельная скорость

критическая скорость потока

limiting velocity         
предельная скорость; критическая скорость потока
settling velocity         
скорость осаждения (отстаивания)

Определение

Лучевая скорость

радиальная скорость (в астрономии), проекция скорости звезды небесного объекта в пространстве на направление от объекта к наблюдателю, то есть на луч зрения. При определении Л. с. используется принцип Доплера (смотри Доплера эффект), применимость которого к световым волнам была доказана в 1900 А. А. Белопольским (См. Белопольский). Согласно этому принципу, длина волны света, излучаемого или поглощаемого движущимся телом, увеличивается или уменьшается в зависимости от того, удаляется это тело от наблюдателя или приближается к нему. Если длину волны, излучаемую неподвижным по отношению к наблюдателю источником света, обозначить λ0, а движущимся λ, то разность λ - λ0 зависит от скорости источника относительно наблюдателя υ в соответствии с формулой, учитывающей эффекты теории относительности

где с - скорость света. Когда υ много меньше, чем с, это соотношение приближённо записывается в виде

Так как скорость звёзд в нашей Галактике не превышает нескольких сотен км/сек, при изучении их движений применяется именно эта приближённая формула. Точная формула используется при изучении движения скоростей вещества, выбрасываемого звёздами, и в других случаях. Л. с. определяют путём измерения разности длин волн линий излучения или поглощения в спектре небесного объекта и в спектре неподвижного лабораторного источника света. Для обычных звёздных скоростей смещения линий малы. Так, для Л. с. 10 км/сек разность λ - λ0 для λ0 = 4500 Å составляет 0,15 Å. При дисперсии используемого спектрографа 40 Å/мм разница в положении линий на спектрограмме составляет всего лишь около 0,004 мм. Поэтому для надёжного измерения Л. с. необходима специально подготовленная аппаратура, позволяющая свести к минимуму инструментальные и иные ошибки. На ряде обсерваторий мира, располагающих крупными телескопами, в том числе в СССР (на Крымской астрофизической обсерватории АН СССР), ведутся многолетние определения Л. с. звёзд. Измерения Л. с. звёзд в галактиках позволили обнаружить их вращение и определить кинематические характеристики вращения галактик, а также нашей Галактики. Периодические изменения Л. с. некоторых звёзд позволяют обнаружить их движение по орбите в двойных и кратных системах, а когда известны угловые размеры орбиты, определить её линейные размеры и расстояние до звезды (смотри Двойные звёзды). Иногда периодические изменения Л. с. объясняются пульсацией верхних слоев звёзд. В ряде случаев различие Л. с., определённое по спектральным линиям, образующимся в разных слоях атмосферы звезды, даёт возможность изучать движение звёздного вещества. Общность Л. с. группы звёзд позволяет выделять скопления генетически связанных звёзд, что имеет большое значение для изучения развития звёзд. О результатах исследований Л. с. удалённых галактик и квазаров, скорости которых составляют заметную долю скорости света, смотри в статье Красное смещение.

Лит.: Курс астрофизики и звёздной астрономии, т. 1, М. - Л., 1951, гл. 18-21.

В. Л. Хохлова.

Википедия

Terminal velocity

Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid (air is the most common example). It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration.

In fluid dynamics an object is moving at its terminal velocity if its speed is constant due to the restraining force exerted by the fluid through which it is moving.

As the speed of an object increases, so does the drag force acting on it, which also depends on the substance it is passing through (for example air or water). At some speed, the drag or force of resistance will equal the gravitational pull on the object (buoyancy is considered below). At this point the object stops accelerating and continues falling at a constant speed called the terminal velocity (also called settling velocity). An object moving downward faster than the terminal velocity (for example because it was thrown downwards, it fell from a thinner part of the atmosphere, or it changed shape) will slow down until it reaches the terminal velocity. Drag depends on the projected area, here represented by the object's cross-section or silhouette in a horizontal plane. An object with a large projected area relative to its mass, such as a parachute, has a lower terminal velocity than one with a small projected area relative to its mass, such as a dart. In general, for the same shape and material, the terminal velocity of an object increases with size. This is because the downward force (weight) is proportional to the cube of the linear dimension, but the air resistance is approximately proportional to the cross-section area which increases only as the square of the linear dimension. For very small objects such as dust and mist, the terminal velocity is easily overcome by convection currents which can prevent them from reaching the ground at all, and hence they can stay suspended in the air for indefinite periods. Air pollution and fog are examples of convection currents.